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A B S T R A C T

Background: The association between superoxide dismutase (SOD) activity and cognitive decline in older adults
remains controversial.
Objectives: This study was designed to examine the association between plasma superoxide dismutase (SOD)
activity and cognitive decline in older population.
Method: We analyzed the follow-up data from 2012 to 2014 waves of the Chinese Longitudinal Healthy
Longevity Survey (CLHLS), a community-based longitudinal survey in Chinese longevity areas. A total of 1004
Chinese adults aged 60 years and older were included in this study. Plasma SOD activity was assessed. Cognitive
function was evaluated by Mini-Mental State Examination (MMSE) in Chinese version. Modified Poisson re-
gression was performed to investigate the association between plasma SOD activities with cognitive decline.
Restricted cubic spline was performed to determine the dose-response relationship.
Results: Participants in the highest quartile of SOD activity had an increased risk of cognitive decline compared
with those in the lowest quartile (relative risk [RR]= 1.32, 95% confidence interval [CI]: 1.00–1.74,
P=0.051).Using cut-off points determined by Chi-square automatic interaction detector analysis (CHAID), the
multivariable relative risks (RRs; 95% CI) for the lowest category, second highest, and the highest versus the
third highest category of SOD activity were 0.56 (0.34–0.92), 1.26 (1.03–1.54), and 0.96 (0.70–1.31), respec-
tively.
Conclusions: Higher SOD activity was associated with elevated risk of cognitive decline among Chinese older
adults.

1. Introduction

Oxidative stress has long received considerable attention in me-
chanisms of various age-related diseases. Mounting evidence supports
the view that oxidative stress may cause neurodegenerative diseases
(Cobley et al., 2018; Kumar et al., 2018). However, a large meta-ana-
lysis found modest evidence of pro-oxidative changes in the brains of
patients with Alzheimer's Disease (Zabel et al., 2018). But it is worth
noting that levels of oxidative markers in the brain do not necessarily
reflect levels in the peripheral circulation. Evidence from another meta-
analysis showed redox changes in peripheral blood in patients with
Alzheimer's disease and mild cognitive impairment (Schrag et al.,
2013). Investigating plasma biomarkers for cognitive decline and the
early signs of cognitive impairment may help us better understand the
mechanisms of neurodegenerative diseases and identify high-risk

populations.
Superoxide dismutase (SOD) is important in oxidative stress mod-

ulation (Sbodio et al., 2018; Bresciani et al., 2015). Based on their metal
cofactors and cellular localization, SODs are classified into three iso-
forms: Mn-SOD/SOD2 (the manganese isoform restricted to mitochon-
dria), SOD1 (Cu/Zn isoform distributed in the cytoplasm) and SOD3
(Cu/Zn isoform present in extracellular space). These enzymes catalyze
the superoxide radical into hydrogen peroxide. Subsequently, hydrogen
peroxide is converted to water and oxygen by other antioxidant en-
zymes including glutathione peroxidase (GPx) or catalase (CAT).
Therefore, SODs are believed to reduce oxidative damage and decrease
vulnerability to aging-related diseases (Dumont et al., 2009; Massaad
et al., 2009; Zou et al., 2012). However, it has been found that aged
mice with overexpression of SOD including Cu/Zn SOD or Mn-SOD,
who have elevated SOD activity, exhibited impaired cognitive function
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(Hu et al., 2007; Lee et al., 2012; Thiels et al., 2000).
Several epidemiological studies have investigated the relationship

between SOD activity and cognitive performance. The conclusions were
inconsistent (Berr et al., 2004; Sánchez-Rodríguez et al., 2006; Schrag
et al., 2013; Talarowska et al., 2014; Wu et al., 2014). Higher SOD
activity was associated with impaired cognitive performance in a pro-
spective study of French older adults aged 62–72 years (Berr et al.,
2004), but this association was not observed among older participants
in a study by Rodríguez et al. (Sánchez-Rodríguez et al., 2006). More-
over, another follow-up study (Zis et al., 2012) found that memory
performance was positively associated with SOD function in patients
with Down Syndrome. However, only few previous studies were based
on relatively large sample sizes using prospective study design. In ad-
dition, information on the SOD activity and cognitive decline in com-
munity-based older people is scarce.

Therefore, the aim of this study was to investigate the relationship
between plasma SOD activity and the risk of cognitive decline pro-
spectively in Chinese older adults using data from the Chinese
Longitudinal Healthy Longevity Survey (CLHLS), a large, prospective,
community-based cohort study.

2. Methods

2.1. Study design and sample population

We conducted this study with the biomarker sub-study datasets
from the CLHLS (Center for Healthy and Development, 2016; Center for
Healthy and Development, 2017). This survey has been previously
described in details elsewhere (Matchar et al., 2016; Zeng, 2008).
Participants in the sub-study were selected from eight longevity areas:
Chengmai County of Hainan Province, Laizhou City of Shandong Pro-
vince, Mayang County of Hunan Province, Rudong County of Jiangsu
Province, Sanshui District of Guangdong Province, Xiayi County of
Henan Province, Yongfu County of Guangxi Autonomous Area, and
Zhongxiang City of Hubei Province. All participants provided a written
informed consent. This study was approved by the Ethics Committees of
Peking University and Duke University. A total of 2423 participants
aged ≥60 years were included in the baseline study performed in 2012.
Follow-up assessments were conducted in 2014 (mean follow-up time is
2.0 years). Both baseline SOD activity levels and baseline Mini-Mental
State Examination (MMSE) score were recorded for 2163 individuals.
We excluded 492 participants because of missing baseline data on po-
tential confounding variables. Supplementary Fig. S1 displayed missing
value patterns for those variables. Among the remaining 1671 partici-
pants, 275 died during the follow-up period and 273 were lost during
the follow-up. Additionally, we excluded 119 participants without
MMSE scores in 2014. The final sample consisted of 1004 participants.
Compared with the excluded participants (n=1419), included in-
dividuals were prone to be men (47.6% vs 42.6%, P < 0.05), younger
(median age 81 vs 91 years, P < 0.05), and had higher baseline MMSE
scores (median score 29 vs 26, P < 0.05). Full details on all compar-
isons are shown in Supplementary Table S1.

2.2. Assessment of cognitive function

Cognitive function was evaluated using the Chinese version of the
MMSE, which contained four domains of cognitive ability: orientation,
calculation, language, and recall. Compared with the original MMSE
(Folstein et al., 1975), several items in this Chinese version were
modified or deleted to make interviews easier and more practical. The
modified MMSE adopted in CLHLS has been previously described in
details elsewhere (Lagona and Zhang, 2010; Zhong et al., 2017). Ac-
cording to prior studies (Zhong et al., 2017), the reliability and validity
of the modified MMSE were good. MMSE scores ranged from 0 to 30
and higher scores reflected better cognition. Each item was scored 1 if
the answer was correct or 0 for incorrect answer. In accordance with

prior research (Xu et al., 2017; Zhang et al., 2008), “unable to answer”
was considered as an incorrect answer. As with previous studies
(Llewellyn et al., 2010; Matchar et al., 2016), we defined cognitive
decline as a loss of MMSE score≥ 3 points.

2.3. Assessment of plasma SOD activity

Procedures for the collection and shipment of blood samples were
described in detail elsewhere (Matchar et al., 2016). SOD activity was
assayed by the xanthine/xanthine oxidase method using commercial
assay kits (Nanjing Jiancheng Bioengineering Institute, Nanjing,
China). The SOD activity was expressed as International Units per
milliliter plasma (IU/mL).

2.4. Assessment of covariates

CLHLS performed home interviews and collected demographic data
including age, gender, education, smoking, alcohol use, leisure activ-
ities, and disability (limitations in daily living activities) (Lv et al.,
2018). History of smoking including smoking status (current, former,
and never), number of cigarettes smoked per day, and duration were
also collected. Pack-years (1 pack-year= 20 cigarettes/day for 1 year)
was used to quantify tobacco exposure in ever smokers, and it was
categorized into never, 0–30 pack-years, and≥ 30 pack-years. Home-
based physical examinations were also conducted by trained medical
personnel. Moreover, fasting plasma glucose, total cholesterol, 25(OH)
D3, high-sensitive C reactive protein and vitamin B12 were measured
with standard medical and laboratory procedures. Details on assay
methods were described in previous studies (Matchar et al., 2016; Yin
et al., 2012). Malondialdehyde was determined by the thiobarbituric
acid (TBA) method using malondialdehyde assay kit (Nanjing Jian-
cheng Bioengineering Institute, Nanjing, China). Hypertension was
defined as systolic blood pressure≥ 140mmHg and/or diastolic blood
pressure ≥90mmHg. Waist circumference≥ 85 cm indicated abdom-
inal obesity for men and ≥80 cm for women (Zhou, 2002). According
to prior research (Matchar et al., 2016; Yin et al., 2012), Type 2 dia-
betes mellitus was defined as fasting plasma glucose ≥7.0mmol/L.
Depressive symptoms were assessed with two self-assessment questions:
(1). In the last 12months, have you felt sad, blue or depressed for
2 weeks or more? (2). In the last 12months, have you lost interest in
things like hobbies, work, or activities that usually give you pleasure?
Participants who had at least one positive answer were considered to
have symptoms of depression.

2.5. Statistical analysis

Categorical variables were described as numbers and percentages,
continuous data were expressed as median with interquartile range
(IQR). Baseline characteristics among groups were compared with
Kruskal–Wallis test or χ2 test. Chi-square automatic interaction detector
(CHAID) analysis was performed to determine the appropriate cut-off
points for discretizing the SOD activity. With merging and splitting
steps, CHAID subdivided the data into statistically significant homo-
geneous subsets based on the relationship between independent and
outcome variables. As shown in Fig. 1, the cut-off points were 46.68,
61.41 and 67.28 IU/mL for SOD activity. Thus, individuals were stra-
tified into four categories in further analyses.

The odds ratio (OR) with 95% confidence intervals (CIs) was cal-
culated according to cut-off points mentioned above with unadjusted
and adjusted logistic regression models. Besides, logistic regression was
repeatedly performed with quartiles of SOD activity as cut-off points.
However, the incidence of cognitive decline in our population was re-
latively high, so differences between the OR and relative risk (RR)
might not be negligible. To avoid the possibility of exaggeration and
misinterpretation of ORs (Knol et al., 2012), we used the modified
Poisson regression approach (Zou, 2004), which combines the Poisson
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regression model with robust variance estimation, to estimate the RRs
and 95% CIs. We performed a Hosmer–Lemeshow test to assess the fit of
the logistic regression, and a Pearson Chi-Squared test for the Poisson
model, in which P > 0.05 was considered to denote a well-fitting
model. Potentially influential observations were identified by the con-
fidence interval displacement diagnostic (C diagnostic) (> 1) and the
DFbeta diagnostic (> 2) as suggested (Hosmer and Lemeshow, 2000;
Pregibon, 1981). Parameter estimates will be compared between the
regression with all cases and the one without the potentially influential
observations. Finally, we used three-knot restricted cubic splines to
determine the dose-response relationship of SOD activity for the in-
cidence of cognitive decline.

Multivariate modified Poisson regression was also performed in
participants free of cognitive impairment at baseline (MMSE ≥18). To
account for excluded observations due to missing information, we used
multiple imputation by chained equations (White et al., 2011) to im-
pute missing data five times on variables with missing values (Sup-
plementary Fig. S1). The distributions of observed and imputed values
did not differ substantially for all imputed covariates (Supplementary
Table S2). For each covariate with missing data, we included all the
other covariates in the imputation process to impute missing values. In
order to increase the predictive power (White et al., 2011), we further
included baseline red blood cell count (1012/L) and white blood cell
count (109/L) as predictors. All regression analyses were performed in
each imputed dataset and the results were pooled according to Rubin's
rules (Rubin, 2008). Following recommendations by White et al., we
did not impute the outcomes in order to avoid the increase in data noise
(White et al., 2011).

Besides, considering that 275 participants died, 119 participants
missed MMSE tests and 273 were lost during the follow-up, to avoid the
competing risk, we also performed multivariate modified Poisson re-
gression in each extreme situation. Firstly, we conducted the analysis
supposing that all of the participants who died, missed MMSE tests or
were lost at follow-up developed cognitive decline and then again, but
assuming that all did not develop cognitive decline. The same potential
confounding factors were adjusted in all of the above multivariate lo-
gistic regression, multivariate modified Poisson regression, and re-
stricted cubic spline models. These confounders included age, gender,
years of education, baseline MMSE score, hypertension, central obesity,
Type 2 diabetes mellitus, depressive symptoms, total cholesterol
(mmol/L), malondialdehyde (μmol/L), high-sensitive C reactive protein
(mg/L), vitamin B12 (pmol/L), 25(OH)D3 (nmol/L), pack-years of

smoking (never, 0–30, ≥30), current alcohol use (yes or no), and
physical activities at leisure (yes or no).

Statistical analyses were conducted by SAS 9.3 (SAS Institute, Cary,
NC, USA) except for the CHAID model, which were performed with
SPSS 24 (IBM Corporation, Armonk, NY, USA). Two-tailed P va-
lues < 0.05 were considered statistically significant.

3. Results

3.1. Baseline characteristics of the study participants

The baseline characteristics of study participants were compared
according to the subgroups of SOD activity (Table 1). The median age of
the total participants was 81 (IQR: 71–91) years and 52.4% were
women. Compared with participants with lower SOD activity (category
1 and 2), those with higher level (category 3 and 4) tended to be older
female participants with lower baseline MMSE scores on average and
fewer years of education.

3.2. Association between plasma SOD activity and risk of cognitive decline

During the follow-up assessments, 300 (29.9%) participants with
cognitive decline were identified. These participants, as shown in Fig. 1,
accounted for 13.0%, 28.0%, 43.8%, and 30.0% of the lowest to highest
SOD activity categories, respectively. There were significant inverse
associations between SOD activity and risk of cognitive decline in
univariate and multivariate logistic regression models (see Supple-
mentary Table S3). No cases had large C diagnostic and DFbeta values,
which suggested that there were no potentially influential observations.
Therefore, all cases were included in the reported regression model.
After further verification using the modified Poisson regression, the
associations were weaker but remained significant. The RRs and 95%
CIs for the association between plasma SOD activity and cognitive de-
cline are presented in Table 2. Participants in the highest quartile had
an RR of 1.32 for the cognitive decline (95% CI: 1.00–1.74, P=0.051)
compared with the lowest quartile of SOD activity. A similar trend was
observed when SOD activity was categorized using cut-off points de-
termined by the CHAID analysis. Compared with the third highest
subgroup (46.68–61.41 IU/mL), the RRs of cognitive decline were 0.56
(95% CI: 0.34–0.92, P=0.022) for the lowest category (≤46.68 IU/
mL) of SOD activity, and 1.26 (95% CI: 1.03–1.54, P=0.025) for the
second highest (61.41–67.28 IU/mL). However, the association was not

Fig. 1. Homogeneous subgroups of SOD activity from Chi-square automatic interaction detector analysis.
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significant for the highest category (> 67.28 IU/mL) (RR=0.96, 95%
CI: 0.70–1.31, P=0.788) versus the second category.

3.3. The dose-response relationship between plasma SOD activity and risk of
cognitive decline

Consistent with the result displayed in Table 2, a non-linear curve
was observed for the association of SOD activity with risk of cognitive
decline in the analysis using restricted cubic splines (Fig. 2). There was
a sharp rise in risk with increasing values of SOD activity until the value
approached approximately 64 IU/mL. Beyond this value, the risk of
cognitive decline became steady with increasing SOD activity.

3.4. Sensitivity analysis

We performed multivariate analysis in participants free of cognitive
impairment at baseline (MMSE ≥18), which showed similar results. To
avoid the competing risk, we also performed multivariate modified
Poisson regression in two extreme situations: all of the participants
excluded in follow-up developed cognitive decline or none developed.

The Model 2 still showed that high SOD activity was associated with
high risk of cognitive decline. However, associations were existed but
weaker or even not significant in Model 3. Results of analysis conducted
with multiple imputation have been presented in Model 4. Details of the
results are described in Supplementary Table S4.

4. Discussion

In this prospective community-based study of Chinese older adults,
we found that the relationship between plasma SOD activity and risk of
cognitive decline was nonlinear; the risk rose with increasing SOD ac-
tivity at lower values but became steady at relatively high values.

Our results are consistent with a study conducted in French older
people (Berr et al., 2004). This prospective community-based study
found that higher Cu/Zn-SOD activity was associated with cognitive
decline but not reported ORs or RRs. In a study by Zhang et al. (Wu
et al., 2014), the association between higher plasma Mn-SOD activity
and cognitive impairment was observed in schizophrenia patients
(n=923) but not in healthy participants (n=566). This may be at-
tributed to the cross-sectional data and smaller sample size of healthy

Table 1
Baseline characteristics of the study participantsa.

Characteristics All participants Categories of plasma SOD activityb P valuec

1 (n=99) 2 (n=604) 3 (n=201) 4 (n=100)

Age (years) 81 (71–91) 76 (70–84) 80 (71–89) 85 (75–98) 83 (76–92) <0.001
Female, n (%) 526 (52.4) 41 (41.4) 291 (48.2) 134 (66.7) 60 (60.0) <0.001
Yeas of education (years) 0 (0–4) 2 (0–5) 0 (0–5) 0 (0–3) 0 (0–3) <0.001
Hypertension, n (%) 562 (56.0) 62 (62.6) 327 (54.1) 115 (57.2) 58 (58.0) 0.408
Diabetes, n (%) 61 (6.1) 10 (10.1) 38 (6.3) 9 (4.5) 4 (4.0) 0.211
Central obesity, n (%) 441 (43.9) 47 (47.5) 274 (45.4) 85 (42.3) 35 (35.0) 0.215
Depressive symptoms, n (%) 78 (7.8) 9 (9.1) 53 (8.8) 9 (4.5) 7 (7.0) 0.239
Pack-years of smoking, n (%)
Never 739 (73.6) 68 (68.7) 436 (72.2) 160 (79.6) 75 (75.0) 0.117
0–30 110 (11.0) 14 (14.1) 68 (11.3) 20 (10.0) 8 (8.0)
≥30 155 (15.4) 17 (17.2) 100 (16.5) 21 (10.4) 17 (17.0)

Current drinking, n (%) 172 (17.1) 18 (18.2) 117 (19.4) 22 (11.0) 15 (15.0) 0.067
Exercise at leisure, n (%) 166 (16.5) 13 (13.1) 113 (18.7) 27 (13.4) 13 (13.0) 0.157
Vitamin B12 (pmol/L) 354 (250–503) 330 (248–466) 350 (248–503) 379 (259–545) 373 (245–531) 0.465
Malondialdehyde (μmol/L) 4.9 (3.9–5.9) 4.9 (3.8–5.9) 5.0 (4.0–6.0) 4.7 (3.7–5.8) 4.9 (3.8–5.7) 0.208
High-sensitive C reactive protein (mg/L) 0.8 (0.4–1.9) 0.7 (0.4–1.6) 0.8 (0.4–2.2) 0.7 (0.3–1.8) 0.6 (0.3–1.4) 0.020
25(OH)D3 (nmol/L) 40.5 (29.4–54.2) 36.7 (28.9–51.9) 40.3 (29.5–52.8) 43.3 (29.5–57.6) 41.6 (29.2–56.5) 0.254
Total cholesterol (mmol/L) 4.3 (3.7–5.0) 4.4 (3.7–4.9) 4.2 (3.6–4.9) 4.4 (3.8–5.0) 4.5 (3.9–5.1) 0.054
Baseline MMSE score 29 (26–29) 29 (27–30) 29 (26–29) 28 (25–29) 28 (23–29) 0.005

SOD, Superoxide dismutase; MMSE, Mini-mental state examination.
a Data are presented as median with interquartile range for continuous variables and absolute with proportions for categorical variables.
b Category 1, 2, 3 and 4 indicates SOD activity ≤46.68, 46.68–61.41, 61.41–67.28 and > 67.28 IU/mL respectively.
c Kruskal–Wallis test or χ2 test.

Table 2
Associations between SOD activity and cognitive decline.

SOD activity (IU/mL) Events
n (%)

Unadjusted modified Poisson regression Adjusted modified Poisson regression

RR (95% CI) P value RR (95% CI) P value

Quartilesa

≤52.02 55 (22.0) Reference Reference
52.02–57.50 63 (24.9) 1.13 (0.82–1.55) 0.443 1.05 (0.78–1.41) 0.759
57.50–62.39 84 (33.5) 1.52 (1.14–2.04) 0.005 1.17 (0.89–1.53) 0.272
>62.39 98 (39.2) 1.78 (1.35–2.36) < 0.001 1.32 (1.00–1.74) 0.051

Cutoffb

≤46.68 13 (13.1) 0.47 (0.28–0.79) 0.004 0.56 (0.34–0.92) 0.022
46.68–61.41 169 (28.0) Reference Reference
61.41–67.28 88 (43.8) 1.56 (1.28–1.92) < 0.001 1.26 (1.03–1.54) 0.025
>67.28 30 (30.0) 1.06 (0.77–1.48) 0.675 0.96 (0.70–1.31) 0.788

SOD, Superoxide dismutase.
a P=0.692 for Pearson Chi-Squared test for the adjusted model.
b P=0.693 for Pearson Chi-Squared test for the adjusted model.
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participants studied. Besides, they found that the association between
cognitive impairment and plasma Mn-SOD activity in schizophrenia
patients was dependent on the Mn-SOD Ala-9Val polymorphism, which
requires validation in further studies. However, there was evidence
supporting the association between higher SOD activity and better
cognitive performance. A cross-sectional study (Sánchez-Rodríguez
et al., 2006) involving community-dwelling older participants
(n=189) reported a positive but not significant correlation between
SOD activity and MMSE score.

Several mechanisms may explain the higher risk of cognitive decline
associated with increased plasma SOD activity in older adults. In pre-
clinical studies, transgenic mice overexpressing SODs have become a
good tool for studying the relationship between SOD and brain func-
tion, whose SOD activity is several folds higher than that of wide-type
mice (Maragos et al., 2000; Thiels et al., 2000). It has been shown that
overexpression of Cu/Zn-SOD impaired cognitive performance in mu-
tant mice through over-production of hydrogen peroxide. Excess hy-
drogen peroxide further altered the redox environment and decreased
the function of N-methyl-D-aspartate receptor (NMDAR) (Lee et al.,
2014). Moreover, the redox-mediated decrease in NMDAR function was
associated with aging-related cognitive decline (Guidi et al., 2015;
Kumar and Foster, 2013). In addition, it is important to note that, al-
though increasing SOD activity may reduce oxidative damage, Lee et al.
found that altered redox-sensitive signaling was more significant for
age-related memory decline than the level of oxidative damage (Lee
et al., 2012). Furthermore, among patients with Down Syndrome, some
studies have demonstrated that symptoms of Alzheimer like dementia
may be attributed to overexpression of SOD, which stems from tripli-
cation of chromosome 21 (Perluigi and Butterfield, 2011; Zana et al.,
2007).

Our study has some limitations. First, the missingness problem
certainly leads to considerable loss of power, but might also limit the
validity of study findings. Moreover, the number of participants with
high SOD activity was small, which may not provide sufficient statis-
tical power to detect significant associations. Because of this, our non-
linear model showed relatively wide confidence limits at higher levels
of SOD activity. The participants were community-dwelling older
people from Chinese longevity areas, which might bring some bias in
estimating the incidence of cognitive decline. Additionally, the CLHLS
oversampled the oldest-old, therefore, it may not be appropriate to

generalize our results to younger populations. Furthermore, the CLHLS
dataset did not contain information on the APOE polymorphism, a
possible confounding factor. Nevertheless, a study by Berr et al. (Berr
et al., 2004), found that the association between SOD activity and
cognitive decline remained similar regardless of the Apo E status.
Therefore, the APOE polymorphism is expected to have little effect on
our results.

In summary, this prospective study indicated that high SOD activity
was associated with high risk of cognitive decline among Chinese older
adults, although the risk became steady in participants with the highest
SOD activity. Future prospective studies should test the non-linear re-
lationship between SOD activity and cognition performance in a more
general population of older people and determine whether the asso-
ciation depends on certain genotypes. Furthermore, since SOD works
together with catalase and the glutathione pathways, it is essential to
fully investigate the association between those antioxidant enzymes
and cognitive function so that we may infer the underlying mechanism
more accurately and identify more reliable biomarkers.
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